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Quarks and leptons have a structure called generation
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1. Introduction

Standard model (SM) is a nice model framework which well 
explains phenomena in particle physics so far
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In SM, the number of generation is three; however, 
there is no guiding principle to predict it



(for stable (unstable) case)

Quark Lepton
mu�,d� � 330 GeV me� � 100 GeV

mν� � 45(90) GeV

Fourth generation is a possible extension; it is phenomenologically 
acceptable

- It is not excluded by electroweak precision measurement 

- Direct search gives mass bounds for fourth generations:

[CDF ’09, PDG] 

[Kribs,Plehn,Spannowsky,Tait ’07]
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Due to those mass bound, 4th generation should be heavy; so 
their Yukawa couplings are larger than          when we consider 
chiral 4th generation

- In phenomenology, Higgs production rate is significantly 
  enhanced by 4th generation loop, compared to its SM-value
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g t, q�

- Such large Yukawa couplings, especially for quarks, have
  Landau poles

O(1)

µ : renormalization scale
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However, the situation changes when one considers vector-
like 4th generation (chiral 4th generation plus its “mirror”)

In such a model, there exist bare mass terms for the 4th 
generations,

Chiral 4th generation Mirror generation

Then, 4th generation quark masses can be large without 
considering large Yukawa

[Perez,Wise ’11]
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For lepton sector, if we assume a         symmetry, bare mass 
terms for 4th generation leptons are forbidden, e.g.,           (see 
later)
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[Perez,Wise ’10; Dulaney,Perez,Wise ’10]

- 4th generation quark Yukawa couplings don’t have Landau
  poles
- They are expected to have little effect on Higgs production
  rate

: Higgs doublet 



In the framework, we study

- Higgs properties, especially focusing on its production and 
  decay rates at the LHC
- Impact of 4th generation on Higgs potential 

We consider vector-like 4th generation scenario where

- 4th generation quarks have bare masses
- 4th generation leptons get their masses from weak symmetry
  breaking
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2. The model
We consider a model with a 4th generation fermion (“primed”) 
and its mirror (“double primed”) in addition to SM particles
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Chiral 4th generation Mirror generation

doublet singlet doublet singlet

Same as the existing generations in SM



Here we assume a         symmetry in lepton sector to forbid 
bare mass terms
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Then, new gauge invariant terms are introduced in Lagrangian;

bare mass

Yukawa

Yukawa

U(1)



One of the examples is gauged baryon&lepton number

In SM, baryon&lepton number are conserved; so one can 
consider SM as effective theory of a model where 
baryon&lepton number are gauged and spontaneously break 
at very high energy [Foot,Joshi,Lew ’89]

Here in such a framework, we consider seesaw scenario for 
ordinary generation neutrinos in lepton sector
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For seesaw scenario, we consider a scalar with lepton number 
2, which breaks           

MνNRNR + h.c
�SL� �= 0

[Perez,Wise ’10]

(forbidden)

: scalar, which breaks U(1)L

- The terms which create bare mass terms for 4th generation 
  leptons are forbidden

- We can introduce the terms to create heavy Majorana 
  neutrino masses for ordinary generations

U(1)L
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So the additional Lagrangian we consider is (again),
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3. Higgs production and decay

Higgs production
Higgs production rate is dominated 
by gluon fusion process at the LHC

As I mentioned in the Introduction, 4th generation quarks have 
bare masses in our model so they decouple in low energy 
effective theory when their masses are large

g q

In our model, 4th generation quarks give new contributions in 
addition to top 
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Numerical results

Higgs production rate quickly approaches its SM-value
cf. in chiral 4th generation scenario, the ratio is       

: Bare mass 
  parameters
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In chiral 4th generation scenario,                                              
is excluded by LHC due to the enhancement of the Higgs 
production rate; this exclusion is invalid in our case

120 GeV ≤ mh ≤ 600 GeV

[Talk given by CMS collaboration at EPS ’11] 
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Higgs decay

The extra generation makes changes in the following three 
decay processes in Higgs decay;                     and
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Here, we already know that 4th generation quarks decouple 
rapidly; so we neglect the effect of 4th generation quarks for 
simplicity in the following calculation
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Fermion loops and      boson loop 
interfere destructively
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(i) h→ γγ

for particle 
: Analytic function 

- The decay rate turns out to be 
               of its SM value 

Numerical results

30-40%

: Chiral (mirror) 4th generation 
  charged lepton mass

c.f., The decay rate :

- The dependence of the new 
  charged lepton masses on
  this result is weak



h→ γZ

h→ gg

(ii)
The decay rate is almost same as its SM-value

(iii)
The decay rate is unchanged since 4th generation 
quarks decouple



: Branching ratios for                         are reduced 
  to ~70% of its SM-value due to the appearance
  of new decay modes,

: Branching ratios are very similar to those in SM
  except for   

h→WW,ZZ

- mh < 200 GeV

- mh > 200 GeV
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Branching ratios

h→ γγ

using HDECAY 
package
[Djouadi,Malinowski,
Spira’98] 

h→ e�+e�−, etc.



When the neutral 4th generation leptons are lighter than 
gauge bosons, the reduction of branching ratios for
                        are much drastic; the branching ratios 
turn out to be ~30% of its SM-value around 
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-                      exclusion may also be invalid when new neutral
  lepton are lighter than gauge bosons

- Higgs mass of                      exclusion is partially invalid 
  because WW, ZZ modes are reduced to ~70% of its SM-values

200-400 GeV

145-200 GeV

[Talk given by CMS collaboration at LP ’11] 

SM Higgs Search Combination 

26 

Expected exclusion mass range: 130 – 440 GeV 
Observed exclusion mass range: 145-216, 226-288, 310-400 GeV 

CMS PRELIM 
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H = −µ

2
H

|H|2 + λ|H|4

4. Higgs mass bounds

As mentioned in Introduction, 4th generation quarks don’t have 
any Landau poles; however, 4th generation leptons may have

So 4th generation lepton Yukawa couplings may affect Higgs 
potential,



16π2µ
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= 24λ2 + 12λy2

t − 6y4
t

µ

λ

In SM, Higgs quartic coupling could be divergent or get 
negative at a certain scale (which is interpreted as a cutoff of 
theory) depending on its value at weak scale 

This fact is seen in the renormalization 
group equation (RGR) for    ,λ

[Cabbie,Maiani,Parisi,Petronzi ’79;Beg,Panagiotakopoulos,Sirloin ’84;Lindner 
’86;Altarelli,Isidori ’94;Casas,Espinosa,Quiros 94’;Hambye,Riesselmann ’96] 

~ weak scale

The upper and lower bound for Higgs mass are obtained 
for a fixed cutoff



Here we have assumed                                                             for simplicity

16π2µ
∂λ

∂µ
=24λ2 + 4λ

�
3y2

t + 2(h2
E + h2

N )
�
− 2

�
3y4

t + 2(h4
E + h4

N )
�

− 3λ(3g2
2 + g2

1) +
3
8

�
2g4

2 + (g2
2 + g2

1)2
�

16π2µ
∂hE

∂µ
=

7
2
h3

E + hE

�
3y2

t +
1
2
h2

N

�
− hE

�
9
4
g2
2 +

15
4

g2
1

�
,

16π2µ
∂hN

∂µ
=

7
2
h3

N + hN

�
3y2

t +
1
2
h2

E

�
− hN

�
9
4
g2
2 +

3
4
g2
1

�
,

16π2µ
∂yt

∂µ
=

9
2
y3

t + yt

�
2h2

E + 2h2
N

�
− yt

�
8g2

3 +
9
4
g2
2 +

17
12

g2
1

�

h�
E = h��

E ≡ hE , h�
N = h��

N ≡ hN

We have performed the same analysis in our model to get 
Higgs mass bounds

After solving those Eqs, we solve the  RGE for    :λ

First we solve RGEs for Yukawas,



- Higgs mass bounds get more strict
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- No Landau pole for 4th generation Yukawa and top Yukawa
  couplings up to Planck scale
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When the masses of 4th generation leptons are larger, their 
Yukawa couplings have Landau poles

As a consequence, constraint for Higgs mass becomes more 
stringent



5. Conclusion

We have considered vector-like 4th generation where new 
leptons get their mass by weak symmetry breaking but 
new quarks do not

- Higgs decay rate for               is reduced to 30-40% of its
  SM-value, while Higgs production rate is the same as in SM
- Higgs mass bounds turn out to be more stringent 

In the framework, we have studied their impact on Higgs 
properties and found that  

h→ γγ
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Higgs-quark interaction

: mass eigenstate

: an analytic function

Then, cross section for gluon fusion is given by
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Higgs-lepton interaction

: Dirac particles                   



mh (GeV) Br/BrSM(WW ) Br/BrSM(ZZ)
150 100% 100%
200 100% 100%
300 71% 71%
350 75% 76%
400 80% 81%
450 83% 84%

Higgs decay rate
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150 27% 28%
200 74% 75%
300 73% 74%
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e.g.,

Mixings between ordinary generation and 4th generation are 
constrained by unitarity of CKM matrix and meson decays





Vud Vus Vub Vub�

Vcd Vcs Vcb Vcb�

Vtd Vts Vtb Vtb�

Vt�d Vt�s Vt�b Vt�b�





|Vub| = (3.89 ± 0.44)× 10−3

|Vcb| = (40.6 ± 1.3)× 10−3

|Vtb| = 0.88 ± 0.07

|Vus| = 0.2252 ± 0.0009
|Vcs| = 1.023 ± 0.036

|Vts| = (38.7 ± 2.1)× 10−3

|Vud| = 0.97425 ± 0.00022
|Vcd| = 0.230 ± 0.011

|Vtd| = (8.6 ± 0.6)× 10−3

|Vub� | < 0.06, |Vcb� | < 0.027, |Vtb� | < 0.31 3σ

[PDG ’10]

CKM matrix

@
[Alok,Dighe,London ’11]



However, the region                            where this process 
dominates in decay mode is already excluded by [Hung,Sher ’08] 
based on [CDF ’07]

- 4th generation bottom:

- 4th generation top: t� → bW

b� → tW (mb� > mt + mW )

b� → bZ

mb� < mt + mW

So, one usually assumes that 4th generation decays to 3rd 
generation

Otherwise, bottom’ decays to Z at 1-loop process,



mb� > 338 GeVmt� > 311 GeV

4th generation quark mass bound

with the best-fit value of the signal cross section.
Kinematics of the two signal events is shown in Fig. 2
and the pT values are given in Table III.

We construct confidence intervals [33] in the theoretical
cross section by generating ensembles of simulated experi-
ments that describe expected fluctuations of statistical and
systematic uncertainties, including uncertainties in the jet-
energy scale [34], gluon radiation [35], signal and back-
ground normalization, and parton distribution functions
[36,37]. The median expected and observed limits and
theoretical next-to-leading-order (NLO) cross sections
[31,32] are given in Table II and shown in Fig. 3.

We convert limits on the pair-production cross sections
to limits on the fermion masses and obtain mb0 , mB >
338 GeV=c2, and mT5=3

> 365 GeV=c2 at 95% confidence

level. The two events observed are consistent with the
predicted number of background events, although we
note that the e! event has a number of jets characteristic
of the signal, reducing the observed lower limits from what
is expected. This is the most restrictive direct lower limit

on the mass of a down-type fourth-generation quark, sig-
nificantly reducing the allowed SM mass range, and the
first lower limits on the masses of quarklike fermions
T5=3and B, which may figure prominently in future
searches.
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TABLE III. Transverse momentum (in GeV=c) of leptons and
transverse energy (in GeV) of jets in the two events with the
‘!‘!bjE6 T signature.

Event ‘1 ‘2 jet1 b-jet E6 T other jets

!þ!þ 80 31 78 25 87 40
eþ!þ 73 21 60 42 27 39, 33, 24
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FIG. 3. Theoretical cross sections for b0 (or B) and T5=3 þ B
with expected and observed 95% C.L. limits overlaid.
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FIG. 2 (color online). Event displays for the observed three-jet,
!! event (a), (b) and the five-jet, e! event (c), (d). Shown in (a)
and (c) are views of the events along the beam axis; jets shown as
cones, electrons as solid lines, muons as dotted lines, and
missing transverse energy as an arrow; lengths are proportional
to pT (see Table III). Shown in (b) and (d) are views of the events
in "##; jets shown as open circles, electrons as filled circles,
and muons as dashed circles; radii are proportional to pT .
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Figure 1: Observed and predicted distribution of Mrec (left) and HT (right). The predicted distribution corresponds to that

for a 300 GeV/c2 mass t′ signal with a cross section times branching ratio at the 95% CL upper limit.
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Figure 2: Observed and expected 95% CL upper limits on the cross section times branching ratio as a function of t′ mass. The

one and two sigma bands around the expected limits are also shown. The theoretical prediction is shown assuming a 100%

branching ratio to Wq.
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Figure 4. Correlation between Br(µ → eγ) and R(µTi → eTi). The shaded areas indicate the
expected future experimental bounds on both observables.

Figure 5. Constraints on the allowed range of |Ue4| and |Uµ4| resulting from lepton universality
(1σ/ 2σ/3σ: dark gray/gray/light gray area, respectively) and the current experimental bounds
on µ → eee, µ → eγ, and µ − e conversion (thick black lines). The contour lines indicate the
ratio GSM4

F /GSM3
F , where GSM4

F is the value of the Fermi constant extracted from muon lifetime
measurement assuming 4 generations, and GSM3

F is the usual SM3 Fermi constant (s. [16]).

As pointed out by [16], the combination of results from leptonic τ decays and radiative
µ decays efficiently constrains the involved PMNS parameters |Ue4| and |Uµ4|. We show
these bounds in figure 5, adding the constraint from µ − e conversion which turns out to
be the most stringent one.

– 14 –

MNS matrix

[Buras,Duling,Feldmann,Heidsieck,Promberger ’10]


